CHEMICAL KINETICS & REDIOACTIVITY

RATE/VELOCITY OF CHEMICAL REACTION :

Rate = $\frac{\Delta c}{\Delta t} = \frac{\text{mol/lit.}}{\text{sec}}$ = mol lit⁻¹ time⁻¹ = mol dm⁻³ time⁻¹

Types of Rates of chemical reaction :

For a reaction R \longrightarrow P

Average rate = Total change in concentration Total time taken

$$\mathsf{R}_{\text{instantaneous}} = \lim_{t \to 0} \left[\frac{\Delta c}{\Delta t} \right] = \frac{dc}{dt} = -\frac{d[\mathsf{R}]}{dt} = \frac{d[\mathsf{P}]}{dt}$$

RATE LAW (DEPENDENCE OF RATE ON CONCENTRATION OF REACTANTS):

Rate = K (conc.)^{order} – differential rate equation or rate expression Where K = Rate constant = specific reaction rate = rate of reaction when concentration is unity unit of K = $(conc)^{1-order}$ time⁻¹

Order of reaction :

 $m_1A + m_2B \longrightarrow products.$

 $R \propto [A]^p [B]^q$ Where p may or may not be equal to m₁ & similarly q may or may not be equal to m₂.

p is order of reaction with respect to reactant A and q is order of reaction with respect to reactant B and (p + q) is **overall order of the reaction**.

INTEGRATED RATE LAWS:

CLICK HERE

METHODS TO DETERMINE ORDER OF A REACTION

(a) Initial rate method :

r = k [A]ª [

[B] = constant [C] = constant

then for two different initial concentrations of A we have

if

$$\mathbf{r}_{0_1} = \mathbf{k} [\mathbf{A}_0]_1^a$$
, $\mathbf{r}_{0_2} = \mathbf{k} [\mathbf{A}_0]_2^a$

$$\Rightarrow \frac{\mathbf{r}_{0_1}}{\mathbf{r}_{0_2}} = \left(\frac{[\mathbf{A}_0]_1}{[\mathbf{A}_0]_2}\right)^{\frac{1}{2}}$$

(b) Using integrated rate law :

It is method of trial and error.

(c) Method of half lives :

$$\label{eq:transformation} \text{for n^{th} order reaction} \qquad t_{_{1/2}} ~ \propto ~ \frac{1}{\left[R_{_{0}}\right]^{n-1}}$$

(d) Ostwald Isolation Method : rate = k [A]^a [B]^b [C]^c = k₀ [A]^a

METHODS TO MONITOR THE PROGRESS OF THE REACTION :

(a) Progress of gaseous reaction can be monitored by measuring total pressure at a fixed volume & temperature or by measuring total volume of mixture under constant pressure and temperature.

:.
$$\mathbf{k} = \frac{2.303}{t} \log \frac{P_0(n-1)}{nP_0 - P_t}$$

{Formula is not applicable when n = 1, the value of n can be fractional also.}

(b) By titration method :

- **1.** $\therefore a \propto V_0$ $a x \propto V_t$ \Rightarrow $k = \frac{2.303}{t} \log \frac{V_0}{V_t}$
- 2. Study of acid hydrolysis of an easter.

$$k = \frac{2.303}{t} \log \frac{V_{\infty} - V_0}{V_{\infty} - V_t}$$

(c) By measuring optical rotation produced by the reaction mixture :

$$\mathsf{k} = \frac{2.303}{\mathsf{t}} \log \left(\frac{\theta_0 - \theta_\infty}{\theta_\mathsf{t} - \theta_\infty} \right)$$

🕀 www.studentbro.in

EFFECT OF TEMPERATURE ON RATE OF REACTION.

T.C. =
$$\frac{K_{t+10}}{K_t} \approx 2 \text{ to } 3 \text{ (for most of the reactions)}$$

Arhenius theroy of reaction rate.

 $SH_R =$ Summation of enthalpies of reactants $SH_P =$ Summation of enthalpies of reactants DH = Enthalpy change during the reaction $Ea_1 =$ Energy of activation of the forward reaction $Ea_2 =$ Energy of activation of the backward reaction

Arhenius equation

$$k = Ae^{-E_aRT} r = k [conc.]^{order}$$

$$\frac{dlnk}{dT} = \frac{E_a}{RT^2} log k = \left(-\frac{Ea}{2.303 R}\right)\frac{1}{T} + log A$$

If k_1 and k_2 be the rate constant of a reaction at two different temperature T_1 and T_2 respectively, then we have

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \text{ R}} \cdot \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$\bigstar \qquad \mathsf{T} \to \infty \, , \, \mathsf{K} \to \, \mathsf{A}.$$